Abstract:The scientific computation of large deformations in elastic-plastic solids is crucial in various manufacturing applications. Traditional numerical methods exhibit several inherent limitations, prompting Deep Learning (DL) as a promising alternative. The effectiveness of current DL techniques typically depends on the availability of high-quantity and high-accuracy datasets, which are yet difficult to obtain in large deformation problems. During the dataset construction process, a dilemma stands between data quantity and data accuracy, leading to suboptimal performance in the DL models. To address this challenge, we focus on a representative application of large deformations, the stretch bending problem, and propose FilDeep, a Fidelity-based Deep Learning framework for large Deformation of elastic-plastic solids. Our FilDeep aims to resolve the quantity-accuracy dilemma by simultaneously training with both low-fidelity and high-fidelity data, where the former provides greater quantity but lower accuracy, while the latter offers higher accuracy but in less quantity. In FilDeep, we provide meticulous designs for the practical large deformation problem. Particularly, we propose attention-enabled cross-fidelity modules to effectively capture long-range physical interactions across MF data. To the best of our knowledge, our FilDeep presents the first DL framework for large deformation problems using MF data. Extensive experiments demonstrate that our FilDeep consistently achieves state-of-the-art performance and can be efficiently deployed in manufacturing.




Abstract:Lodging, the permanent bending over of food crops, leads to poor plant growth and development. Consequently, lodging results in reduced crop quality, lowers crop yield, and makes harvesting difficult. Plant breeders routinely evaluate several thousand breeding lines, and therefore, automatic lodging detection and prediction is of great value aid in selection. In this paper, we propose a deep convolutional neural network (DCNN) architecture for lodging classification using five spectral channel orthomosaic images from canola and wheat breeding trials. Also, using transfer learning, we trained 10 lodging detection models using well-established deep convolutional neural network architectures. Our proposed model outperforms the state-of-the-art lodging detection methods in the literature that use only handcrafted features. In comparison to 10 DCNN lodging detection models, our proposed model achieves comparable results while having a substantially lower number of parameters. This makes the proposed model suitable for applications such as real-time classification using inexpensive hardware for high-throughput phenotyping pipelines. The GitHub repository at https://github.com/FarhadMaleki/LodgedNet contains code and models.